Comparative analysis of reference genes in honey bees, Apis cerana and Apis mellifera

JOURNAL OF APICULTURAL RESEARCH(2022)

Cited 0|Views3
No score
Abstract
Honey bees are vital pollinators in agriculture and important model insects. To understand the genetic and molecular aspects in their development, a reverse transcription quantitative polymerase chain (RT-qPCR) is used to investigate the target genes. However, it is essential to use the appropriate reference genes as endogenous controls for accurate normalization of target genes. To identify stable reference genes in two honey bee species, [Apis mellifera (Am) and Apis cerana (Ac)], we evaluated eight candidate reference genes including, actin, atub, ef1 alpha, gapdh, rpl13a, rpl32, rps18 and tif. Worker bees belonging to the two species were collected at each developmental day during the embryonic and postembryonic developmental stages. The tyrosine hydroxylase (th) gene was used as the target gene to validate the selected reference genes. Our results revealed that rpl13a was the most stable reference gene at all developmental stages of Am and Ac. In addition, gene combinations, including Amrpl13a & Amrps18 & Amactin, Amrpl13a & Amrpl32, Acrpl13a & Acrpl32, Acrpl13a & Acrpl32 & Acef1 alpha followed by other combinations effectively normalized the expression of the target genes during the embryonic and postembryonic developmental stages of Am and Ac, respectively. Our findings provide a foundation for standardized RT-qPCR analysis to improve the accuracy of genes normalization during the different developmental stages of honey bees.
More
Translated text
Key words
RT-qPCR, reference genes, gene expression, Apis mellifera, Apis cerana
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined