Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability

CELL REPORTS PHYSICAL SCIENCE(2021)

引用 9|浏览11
暂无评分
摘要
Radiation-processed strategy is compatible with scalable manufacturing of perovskite solar cells (PSCs). Herein, we show such radiation-processed planar negative-intrinsic-positive (n-i-p) PSCs, which integrate radiation-processed electron/hole transporting layers (ETLs/HTLs) and light-absorbing layers (LALs). Infrared radiation annealing enables SnO2 ETLs with a conductivity comparable to those annealed by hot plates and renders perovskite LALs with pure perovskite phase and prominent (111) orientation. With the benefit of chlorofullerene C60Cl6 additives for LALs, PSCs based on Li/Co-bis(trifluoromethanesulphonyl)imide (TFSI)-doped spiroOMeTAD HTLs exhibit a champion efficiency of 22% and excellent photostability, retaining 82% of their efficiencies after 504 h of illumination. With the solar-radiation-treated gadolinium-endohedral fullerene Gd@C82-doped spiro-OMeTAD, the radiation-processed PSCs show stable efficiencies of more than 20% and decent shelf stability, maintaining 92% of their efficiencies after 1,008 h in air. Based on that prototype of radiation-processed PSCs, this work implies that cost-efficient fullerene additives/dopants are beneficial to the feasible radiation strategy for fabricating efficient and stable PSCs.
更多
查看译文
关键词
fullerenes,perovskite solar cells,radiation processes,chlorofullerenes,endohedral fullerenes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要