Dissimilar use of an external heat source for thermoregulation by shrews from different geographic regions

JOURNAL OF THERMAL BIOLOGY(2022)

引用 0|浏览0
暂无评分
摘要
Ambient temperature has a substantial influence on the thermoregulation costs of small mammals due to their high surface-to-volume ratio. Shrews are among the smallest of mammals and have adopted different behavioral and physiological strategies to deal with cold temperatures. In this study, we assessed the use of an external heat source in the thermoregulatory strategy of two Crocidurinae species, Crocidura russula and C. suaveolens, and one Soricinae species, Sorex araneus. Crocidura russula inhabits western Europe and is better adapted to a Mediterranean climate; C. suaveolens inhabits central Europe; and S. araneus inhabits northern Europe and is better adapted to a Palearctic climate. We predicted that C. russula (most southern species) would spend larger amounts of time using an external heat source because it is the most cold-sensitive species, while S. araneus (most northern species) would spend less time using an external heat source or not respond to it. Shrews were experimentally tested in captivity inside a terrarium where they had access to a heat rock, which could be turned off (cold) or on (heated), depending on treatment. Our results confirmed our initial prediction: C. russula was the species that spent significantly more time on the heated rock, followed by C. suaveolens. Only a quarter of S. araneus individuals spent large amounts of time on the heat rock, which suggests this thermoregulation strategy is not generally adopted by this species, but may be rather associated with some individual personalities. We also analyzed the influence of the heat rock on rewarming from heterothermy, but heterothermy was not different between rock treatments. Overall, our results show that shrew species use external heat sources for thermoregulation according to their sensitivity to cold.
更多
查看译文
关键词
Basking behavior,Behavioral thermoregulation,Heat rock,Individual plasticity,Soricidae,Thermal preference
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要