Design of Third-Order Dispersion Compensation for the SG PW Laser System Using a Birefringent Crystal

APPLIED SCIENCES-BASEL(2022)

Cited 0|Views11
No score
Abstract
This study aims to update the existing SG PW laser system and improve the temporal contrast and shape fidelity of a compressed pulse with a 150 fs level for multi-PW (5-10 PW). The design of third-order dispersion (TOD) compensation via a birefringent crystal was studied through numerical simulations and experiments. The dispersions introduced by the birefringent crystal were calculated using the Jones matrix element by changing the in-plane rotation angle phi, thickness d, incident angle theta, and temperature T, while also considering the transmission spectral bandwidth. The group-velocity dispersion (GVD), TOD, and fourth-order dispersion (FOD) of the existing SG PW laser system and its influence on the compressed pulse with different pulse durations were analyzed. The results suggest that a TOD of 1.3 x 10(6) fs(3) needs to compensate for the multi-PW design. The compensation scheme is designed using a quartz crystal of d = 6.5 mm, theta= 90 degrees, phi = 17 degrees, and T = 21 degrees C, corresponding to the thickness, inclination angle, in-plane rotation angle, and temperature, respectively. Furthermore, we show a principle-proof experiment offline and measure the GVD and TOD by the Wizzler, which is based on theoretical simulations. These results can be applied to independently and continuously control the TOD of short-pulse laser systems.
More
Translated text
Key words
third-order dispersion compensation, birefringent crystal, SG PW laser system, temporal contrast, shape fidelity, multi-PW laser
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined