Designing asymmetrically modified nanochannel sensors using virtual EIS

ELECTROCHIMICA ACTA(2022)

引用 4|浏览12
暂无评分
摘要
Monitoring electrochemical impedance changes across an asymmetrically functionalized nanochannel array provides an attractive mechanism for chemical and biological sensors. Specific binding of the receptor molecules with their analyte leads to changes in charge distribution on the nanochannel surfaces modifying the ionic transport across them. The magnitude of impedance change due to receptor/ligand binding or sensor sensitivity depends on a large number of parameters and consequently, identification of parameters that result in sensitive and specific sensing performance is extremely tedious and cost-intensive. We rely on a 'virtual EIS' procedure that models the transient ionic current due to a step-change in voltage to determine the frequency-dependent impedance of an asymmetrically functionalized nanochannel. This procedure is used to predict the impedance changes due to the specific binding of thrombin on nanochannel surfaces. Surface charge changes associated with the binding of thrombin protein on the aptamer coated surface result in a decrease of the membrane impedance and computational results suggest that a reduction in the ionic strength of the electrolyte leads to an increase in the magnitude of binding induced impedance reduction. Sensing experiments with thrombin binding aptamer are performed to evaluate the trends from the high-throughput computations. The agreement between model predictions and experimental observations suggests that the present modeling approach may be utilized to computationally evaluate sensor performance for a range of parameters and rapidly identify sensor configurations that enable point-of-care diagnostic devices with improved sensitivities. (C) 2021 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Nanoporous alumina, Surface charge, Virtual electrochemical impedance spectroscopy (EIS), Thrombin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要