Speleogenesis in a lens of metamorphosed limestone and ankerite: Ochtina Aragonite Cave, Slovakia

INTERNATIONAL JOURNAL OF SPELEOLOGY(2022)

引用 6|浏览6
暂无评分
摘要
The Ochtina Aragonite Cave (Western Carpathians) represents a unique natural phenomenon. It originated under particular lithological and hydrogeological conditions of the Ochtina Karst in which several isolated lenses of Paleozoic crystalline limestone, partly metasomatically altered to ankerite, are enclosed by phyllites. Meteoric water seepage through non-carbonate rocks dissolved limestone and caused the oxidation of ankerite to Fe oxyhydroxides. Carbon dioxide produced during ankerite oxidation enhanced limestone dissolution. The maze cave consists of parallel fault-controlled linear passages and chambers interconnected by transverse horizontal passages. Phreatic and epiphreatic solution morphologies resulted from slowly moving or standing water. These include flat ceilings (Laugdecken), facets, lateral notches, convection ceiling cupola-shaped depressions, and spongework-like hollows. Flat ceilings were developed in several altitude positions, each of them probably closely below the slightly oscillated water table. Primary phreatic cupola-shaped depressions, truncated by flat ceilings, represent relics of the oldest cavities (pre-Quaternary? to Early Pleistocene). Inward-sloping smooth facets were not developed only in passages with flat ceilings, but also in the passages and halls with a vaulted ceiling. The asymmetrical shape of cusped depressions above the facets were documented in detail by a high-resolution cave topography with terrestrial laser scanning and digital photogrammetry. Middle-Late Pleistocene accumulation phases, identified by magnetostratigraphy of cave sediments and U-series dating of speleothems, are associated with phreatic and later epiphreatic development. The deposition on the bottom bedrock began before 1.8 Ma. The Brunhes/Matuyama boundary (0.773 Ma) and Jaramillo magnetozone (0.990-1.071 Ma) were recorded in the profile in the Ovalna chodba Passage. Slow depositional rate (similar to 0.09 cm/kyr) calculated from magnetostratigraphy resulted from slow water movement in confined conditions in marbles completely enclosed by phyllites and no direct relation to the surface. Only occasionally turbid water was loaded in extremely fine-grained infiltration material and autochthonous Fe oxyhydroxides. The depositional rate in Mn-rich layer was much slower (similar to 0.03 cm/kyr). Additional U-series dating confirmed that old aragonite generations (with ages about 500-450 ka and 143-121 ka) were partly corroded by repeated floods during Late Pleistocene humid episodes. Aragonite younger than 13.5 ka is not corroded.
更多
查看译文
关键词
Cave morphology, LiDAR, magnetostratigraphy, ankerite, speleogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要