Design and Control of Modular Multilevel Converter for Voltage Sag Mitigation

ENERGIES(2022)

引用 4|浏览1
暂无评分
摘要
Voltage sag in a power system is an unavoidable power quality issue, and it is also an urgent concern of sensitive industrial users. To ensure the power quality demand and economical operation of the power system, voltage sag management has always drawn great attention from researchers around the world. The latest research that realizes the power quality conditioning has used dynamic voltage restorers (DVRs), static VAR compensator (SVCs), adaptive neuro-fuzzy inference systems (ANFISs), and fuzzy logic controllers based on DVR to mitigate voltage sag. These devices, methods, and control strategies that have been recently used for voltage sag mitigation have some limitations, including high cost, increased complexity, and lower performance. This article proposes a novel, efficient, reliable, and cost-effective voltage sag mitigation scheme based on a modular multilevel converter (MMC) that ensures effective power delivery at nominal power under transient voltage conditions. The proposed method, the MMC, compensates for the energy loss caused by voltage sags using its internal energy storage of the submodules, and ensures reliable power delivery to the load distribution system. Furthermore, control strategies are developed for the MMC to control DC voltage, AC voltage, active power, and circulating current. Detailed system mathematical models of controllers are developed in the dual synchronous reference frame (DSRF). Validation of the results of back-to-back MMC for dynamic load distribution system is analyzed which proves the effectiveness of the proposed scheme for voltage sag mitigation.
更多
查看译文
关键词
dynamic load distribution, voltage sag mitigation (VSM), modular multilevel converter (MMC), circulating current suppression control (CCSC), dual synchronous reference frame (DSRF), proportional resonance controller (PRC), inner current controller (ICC)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要