Enhanced oxygen reduction upon Ag/Fe co-doped UiO-66-NH2-derived porous carbon as bacteriostatic catalysts in microbial fuel cells

CARBON(2021)

引用 35|浏览8
暂无评分
摘要
As a promising energy storage/conversion technology, the microbial fuel cell (MFC) is generally restricted by the biofouling on the cathode and the sluggish kinetics of oxygen reduction reaction (ORR). Consequently, developing bacteriostatic and high-performance ORR catalysts is critical for the large-scale application of MFC. Herein, we prepare an electrocatalyst of porous octahedral zirconium-based metal organic framework (MOF) UiO-66-NH2 with dispersed Ag and Fe3C nanoparticles (Ag/Fe-N-C) through a facile impregnation and pyrolysis method for an efficient alkaline and neutral ORR. Systematic experimental results demonstrate that the synergistic effect of Ag and Fe can optimize the d-band center of catalyst to boost the interfacial charge transfer, thus resulting in an increased ORR kinetics. As expected, the catalyst with Ag/Fe-N-C-2:1 exhibits outstanding onset potential (1.01 V vs. RHE) and half-wave potential (0.58 V vs. RHE) in neutral electrolyte, which is comparable to Pt/C catalyst. Meanwhile, Ag/Fe-N-C-2:1 indicates obvious antibacterial activity, inhibiting the biofouling on the cathode surface. The MFC with the Ag/Fe-N-C-2:1 as the cathode catalyst can achieve a maximum power density of 1261.1 +/- 24 mW m(-3), outperforms the MFC with Pt/C (1087.5 +/- 14 mW m(-3)). In summary, Ag/Fe-N-C2:1 composite can serve as a feasible alternative cathode catalyst for MFC. (C) 2021 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Microbial fuel cell, Oxygen reduction reaction, Metal organic frameworks, Antibacterial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要