谷歌浏览器插件
订阅小程序
在清言上使用

Optimized Shape of Short-Circuited HTS Coils by Cutting Process for Superconducting Fault Current Limiters

IEEE transactions on applied superconductivity(2021)

引用 4|浏览15
暂无评分
摘要
This article presents an optimization of short-circuited superconducting coils to be used in superconducting fault current limiter devices. The optimized shape reduces losses, eliminates overheating points, improves current distribution, uniforms the voltage drop over the tape length, and ensures uniform resistivity. The geometric analysis and its optimization are presented in this article. The results of computational simulation by finite element method are also presented. Superconducting tape cutting methods and coil welding are investigated. The influence of geometry and cutting technique on the critical current are evaluated based on the experimental tests results. Cutting high-temperature superconductor tapes by punching or laser process showed excellent results using $\theta ={7.5}^{\circ }$ and ${30}^{\circ }$, where $\theta$ is a characteristic angle of the geometry of the coil. There was no excessive degradation of the critical current or delamination, which is common due to the cutting. The laser process led to higher critical current values per unit width ($I_c-{\rm mm}$) to angle cut $\theta ={30}^{\circ }$, a characteristic that has its origin in two factors: 1) temperature increase in a larger area when the adopted cutting angle is ${7.5}^{\circ }$ and 2) higher cutting precision, which imposes a slightly different cross section when compared to the punching process.
更多
查看译文
关键词
High-temperature superconductors (HTC),inductive-superconducting fault current limiters (SFCL),short-circuited coils
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要