Balancing litterfall and decomposition in cacao agroforestry systems

Plant and Soil(2022)

引用 9|浏览25
暂无评分
摘要
Backgrounds and aims Litter protects the underlying soil, depending on litterfall and decomposition, but dynamics of the standing litter stock in agroforestry systems remain poorly understood. We aimed to unravel effects of litter quality, temporal patterns, microclimate, and a possible home-field advantage (HFA) on standing litter dynamics across a land-use gradient. Methods We quantified litterfall, the standing litter stock, and microclimate during a year in (remnant) forest, cacao-based simple and complex agroforestry, cacao monocultures, and annual crops in a cacao producing area in Indonesia. We conducted a reciprocal litter transfer experiment, and tested decomposition rates of pruning residues. Standing litter stocks during the year were estimated from monthly litterfall and decomposition rates. Results Variation in litter quality influenced decomposition rates more strongly than variation in microclimate or HFA. Lower litter quality in complex agroforestry and in the cacao monoculture decreased the decay rate compared to simple agroforestry systems; mean litter residence time was over a year. Mixing high- and low-quality material in pruning residues modified the decomposition rate, soil C and N changes, offering options for targeted management of soil protection and nutrient release. Conclusions The seasonal patterns of litterfall and relatively slow decomposition rates supported permanence of the litter layer in all cacao production systems, protecting the underlying soil.
更多
查看译文
关键词
Litter quality, Standing litter, Decomposition, Pruning residues, Soil nutrients, Indonesia, Home-field advantage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要