Removal of Sb(V) from wastewater via siliceous ferrihydrite: Interactions among ferrihydrite, coprecipitated Si, and adsorbed Sb(V)

CHEMOSPHERE(2022)

引用 10|浏览2
暂无评分
摘要
Although ferrihydrite (Fh) exhibits good Sb(V) adsorption behavior, the instability of its amorphous structure limits its engineering applications. In this study, siliceous ferrihydrite (SiFh) was prepared via coprecipitation to resolve these limitations. X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and SiFh aging tests revealed that the growth of Fh particles covered with Fe-O-Si links was inhibited while maintaining their amorphous structure. Meanwhile, the XRD patterns indicated that SiFh maintained excellent stability after five adsorption-desorption cycles. During the aging process, the added Si decreased the electrostatic interaction between SiFh and Sb(V), which weakened the affinity between Sb(V) and Fh; however, most of the Sb(V) still entered the Fe lattice after seven days of aging, which was favorable for Sb(V) recovery during reutilization. Furthermore, Sb(V) adsorbed from the simulated textile wastewater onto SiFh had the highest adsorption energy (Eads), which meant its unstable inner-sphere complexation on the surface of SiFh. Meanwhile, the presence of SO42-, NO3 , Ca2+, and Mg2+ contributed to Sb(V) outer-sphere adsorption. Both of these factors were conducive to Sb(V) desorption. Hence, SiFh is a promising adsorbent owing to its facile preparation process, stability, and optimal regeneration properties.
更多
查看译文
关键词
Siliceous ferrihydrite,Antimony (V),Stability,Regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要