Silica-Based Composites with Enhanced Rheological Properties Thanks to a Nanosized Graphite Functionalized with Serinol Pyrrole

APPLIED SCIENCES-BASEL(2021)

引用 1|浏览3
暂无评分
摘要
Silica-based rubber composites have tremendous importance, as they allow the reduction in hysteresis in demanding dynamic-mechanical applications such as tire compounds and hence have a lower environmental impact. However, they also present drawbacks such as poor rheological behavior. In this work, an innovative silica-based hybrid filler system was developed, obtaining a rubber composite with an improved set of properties. A nanosized high surface area graphite (HSAG) was functionalized with 2-(2,5-dimethyl-1H-pyrrol-1-yl)propane-1,3-diol, serinol pyrrole (SP), through a simple process characterized by a high carbon efficiency. The HSAG-SP adduct, with about nine parts of SP per hundred parts of carbon filler, was used to form a hybrid filler system with silica. An elastomeric composite, with poly(styrene-co-butadiene) from anionic polymerization and poly(1,4-cis-isoprene) from Hevea brasiliensis was prepared with 50 parts of silica, which was replaced in a minor amount (15%) by either pristine HSAG or HSAG-SP. The best set of composite properties was obtained with HSAG-SP: the same dynamic rigidity and hysteresis and tensile properties of the silica-based material and appreciably better rheological properties, particularly in terms of flowability. This work paves the way for a new generation of silica-based composites, with improved properties, based on a hybrid filler system with a nanosized edge functionalized graphite.
更多
查看译文
关键词
silica, functionalized nanographite, rheological properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要