谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Meso-scale Finite Element (FE) modelling of biaxial carbon fibre non-crimp-fabric (NCF) based composites under uniaxial tension and in-plane shear

COMPOSITE STRUCTURES(2022)

引用 5|浏览8
暂无评分
摘要
Non-crimp-fabrics (NCF) are promising materials in aerospace applications. The complex internal structure of NCF composites could influence the in-plane performances, which needs to be comprehensively studied. The novel three-dimensional (3D) meso-scale repeated unit cell (RUC) models were proposed for biaxial NCF composites based on the Finite Element (FE) method to conduct a systematic parameter study, including layup sequence, out-of-plane tow waviness, resin-rich areas, transverse tow placements and delamination. The meso RUC model could effectively predict the homogenised uniaxial tensile and in-plane shear properties of biaxial NCF composites based on their meso-scale constituent and material properties. A multiscale framework was also developed for biaxial NCF composites. A micromechanical representative volume element (RVE) model provided homogenised mechanical properties for tows, and a macroscopical FE model validated the test results using the homogenised results obtained from meso RUC models. The numerical results were in good agreement with the experiment results. Therefore, the multiscale framework provides an insight into the critical parameters influencing the in-plane properties of NCF composites and an analysis tool for NCF material design.
更多
查看译文
关键词
Non-crimp fabric (NCF), Polymer-matrix composites, Meso-modelling, Finite element analysis (FEA)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要