Efficient production of ethylene glycol from cellulose over Co@C catalysts combined with tungstic acid

SUSTAINABLE ENERGY & FUELS(2022)

引用 4|浏览3
暂无评分
摘要
Catalytic conversion of renewable cellulose, instead of fossil resources, to high-value ethylene glycol (EG) is of great significance for reducing considerable worries regarding the energy problem. However, the EG production from cellulose is dependent on Ni and Ru based catalysts. Herein, encapsulated Co@C catalyst was firstly applied for EG production from cellulose combined with tungstic acid (TA). The mixing of the two catalysts in different ratios was compared and well-controlled, and the highest 67.3% yield of EG can be achieved. TA is used mainly to promote both the cellulose hydrolysis and the retro-aldol reaction of glucose to glycolaldehyde. Co@C catalysts are responsible for the hydrogenation of glycolaldehyde to EG. Compared with traditional noble metals and composite catalysts, the inexpensive and easily synthesized Co@C catalysts could greatly reduce the cost of production of EG. The Co@C catalysts encapsulated with outside graphene layers can keep high stability for at least 6 runs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要