The kinetics of static recovery by dislocation climb

NPJ COMPUTATIONAL MATERIALS(2022)

Cited 16|Views5
No score
Abstract
The initial microstructure of a wide range of structural materials is conditioned by thermo-mechanical treatments such as hot-working, tempering, or solution annealing. At the elevated temperatures associated with these treatments the dislocation microstructure evolves, usually decreasing in density through a process known as static recovery. Despite its technological relevance, static recovery is not fully characterized from a theoretical standpoint, with even the controlling mechanisms subject to debate. In this study, a climb-enabled discrete dislocation dynamics (DDD) capability is leveraged to explore the kinetics of static recovery in pure Fe when controlled by dislocation climb. Quantitative data from these simulations is used to develop a revised static recovery law, and provides the parameters appropriate for predictive microstructure models in Fe. This law differs from previous analytical derivations invoking climb of dislocations, following the logarithmic trends typical of experimental observations where prior work did not. Direct comparison between the recovery law derived from DDD to experimental recovery data in alpha Fe shows strong agreement across a range of temperatures, and suggests that climb is the controlling mechanism for static recovery in pure metals.
More
Translated text
Key words
Coarse-grained models,Mechanical properties,Metals and alloys,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined