Water-assisted formation of amine-bridged carbon nitride: A structural insight into the photocatalytic performance for H2 evolution under visible light

APPLIED CATALYSIS B-ENVIRONMENTAL(2022)

引用 30|浏览15
暂无评分
摘要
Carbon nitride (C3N4) exhibits significant potential as a metal-free photocatalyst for H2 production using visible light. While the C3N4 network consists of tri-s-triazine building units linked by H bonds, it is still controversial how the H bonds affect the photocatalytic performance. In this study, we present a water-assisted method for production of polymeric carbon nitride to control intraplanar structures associated with H bonds and amine bridges. The C3N4 samples produced with a thermal treatment using water and humidified air gas (CN-H) exhibit excellent photocatalytic activities for the hydrogen evolution reaction. From structural and photophysical characterizations, it is found that CN-H samples contain fewer H bonds and more amine bridging groups as well as possess larger domains than C3N4 samples produced without using water (CN-A). These structural changes induced by the water treatment lead to efficient intraplanar migration of photoexcited charge carriers and thus are responsible for the enhanced photocatalytic performances.
更多
查看译文
关键词
Carbon nitrides, Hydrogen evolution reactions, Photocatalysts, Hydrogen bonds, Thermal polycondensation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要