General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism

ACS CATALYSIS(2021)

引用 30|浏览14
暂无评分
摘要
The electrochemical chlorine evolution reaction (CER) is a key anodic reaction in the chlor-alkali process for Cl-2 production, on-site generation of ClO-, and Cl-2-mediated electrosynthesis. Although Ru-based mixed metal oxides have long been used as CER catalysts, they suffer from a selectivity problem due to the competing oxygen evolution reaction. To overcome this shortcoming, we have developed a new CER catalyst composed of atomically dispersed Pt-N-4 sites on carbon nanotubes (Pt-1/CNT). In this study, we demonstrate that the catalytically active Pt-N4 sites can be constructed from H2PtCl6 center dot 6H(2)O and an ionic liquid via a bottom-up approach and a Pt-porphyrin-driven top-down method. Both catalysts exhibit excellent CER activity and remarkable selectivity, demonstrating the general efficacy of Pt-1/CNT for the CER. The electrochemical and in situ X-ray absorption spectroscopy analyses reveal that Pt1/CNT catalysts show a reaction order of similar to 1.8 in the low overpotential regime, where the Volmer step is reconciled with the rate-determining step (RDS). Interestingly, in the high overpotential region, the CER over Pt-1/CNT proceeds with a lower reaction order and the RDS switches to the Heyrovsky step. These unprecedented kinetic insights are clearly distinguished from the oxide-based CER catalysts with the opposite sequence of the RDS.
更多
查看译文
关键词
atomically dispersed catalyst, platinum, chlorine evolution reaction, electrocatalysis, reaction kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要