Copper (II) Heterocyclic Thiosemicarbazone Complexes as Single-Source Precursors for the Preparation of Cu9S5 Nanoparticles: Application in Photocatalytic Degradation of Methylene Blue

CATALYSTS(2022)

Cited 4|Views7
No score
Abstract
In this study, two copper(II) complexes, [Cu(C6H8N3S2)(2)]Cl-2 (1) and [Cu(C7H10N3S2)(2)]Cl-2 center dot H2O (2), were synthesized from 2-(thiophen-2-ylmethylene)hydrazine-1-carbothioamide (L1H) and 2-(1-(thiophen-2-yl)ethylidene)hydrazine-1-carbothioamide (L2H) respectively and characterized using various spectroscopic techniques and elemental analyses. The as-prepared complexes were used as single-source precursors for the synthesis of oleylamine-capped (OLA@CuxSy), hexadecylamine-capped (HDA@CuxSy), and dodecylamine-capped (DDA@CuxSy) copper sulphide nanoparticles (NPs) via the thermolysis method at 190 degrees C and 230 degrees C and then characterized using powder X-ray diffraction (p-XRD), UV-visible spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The p-XRD diffraction patterns confirmed the formation of crystalline rhombohedral digenite Cu9S5 with the space group R-3m. The TEM images showed the formation of nanoparticles of various shapes including hexagonal, rectangular, cubic, truncated-triangular, and irregularly shaped Cu9S5 nanomaterials. The SEM results showed aggregates and clusters as well as the presence of pores on the surfaces of nanoparticles synthesized at 190 degrees C. The UV-visible spectroscopy revealed a general blue shift observed in the absorption band edge of the copper sulphide NPs, as compared to bulk CuxSy, with energy band gaps ranging from 2.52 to 3.00 eV. Energy-dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of the Cu9S5 nanoparticles. The nanoparticles obtained at 190 degrees C and 230 degrees C were used as catalysts for the photocatalytic degradation of methylene blue (MB) under UV irradiation. Degradation rates varying from 47.1% to 80.0% were obtained after 90 min of exposure time using only 10 mg of the catalyst, indicating that Cu9S5 nanoparticles have potential in the degradation of organic pollutants (dyes).
More
Translated text
Key words
heterocyclic thiosemicarbazone copper (II) complexes, thermolysis, copper sulphide nanoparticles, optical properties, photocatalysts
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined