Polydopamine + SiO2 nanoparticle underlayer for improving DLC coating adhesion and durability

Surface and Coatings Technology(2022)

引用 6|浏览10
暂无评分
摘要
A diamond-like carbon (DLC) coating was deposited using a plasma-enhanced chemical vapor deposition (PECVD) method on a polydopamine (PDA) and SiO2 nanoparticle (NP) composite underlayer (PDA + SiO2) to improve its resistance to crack propagation and coating delamination, especially under cyclic loading conditions. Scratch and linear reciprocating wear tests were conducted to identify the critical loads and wear mechanisms of the coating. The PDA + SiO2/DLC coating was also compared with DLC coatings without an underlayer, with a PDA underlayer, and with a trimethylsilane [(CH3)3SiH] (TMS) underlayer. The PDA + SiO2/DLC coating significantly increased the critical loads for initial crack propagation, initial delamination, and global delamination. Linear reciprocating wear tests revealed that the PDA + SiO2/DLC coating had a 2.5 times reduction in the wear track cross-sectional area, and the average dimension of the cracks was 40 times smaller than those of the TMS/DLC coating. Therefore, the PDA + SiO2/DLC was superior in preventing coating crack propagation and delamination compared to the TMS/DLC coating.
更多
查看译文
关键词
Diamond-like carbon,Polydopamine,SiO2 nanoparticles,Adhesion strength,Crack propagation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要