Layer-by-Layer Nanoarchitectonics of Electrochemically Active Thin Films Comprised of Radical-Containing Polymers

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2022)

引用 4|浏览7
暂无评分
摘要
Electroactive coatings based on non-conjugated redox-active polymers have increased in popularity with the development of thin film organic batteries. Control over coating deposition, redox-activity, and ion transport are key to improving their energy storage performance. In this work, the synthesis, solution state electrochemical characterization, and layer-by-layer (LbL) assembly of a nitroxide-based polycation and polyanion are presented. Solution state electrochemical characterization indicates that the rate of electron transfer for the nitroxide polyanion is much higher as compared to the nitroxide polycation. LbL thin films of the nitroxide polyanion and nitroxide polycation are assembled, demonstrating linear growth and tunable thickness (28 nm/layer pair). This work confirms that the ion transport mechanism of the LbL films during the redox reaction is influenced depending on the charge of the terminating layer, where the nitroxide polyanion can participate in self-doping, which leads to a contribution from cation transport. The nitroxide polyanion-terminated film also exhibits a higher capacity and a slightly reduced charge transfer resistance. However, it was also observed that a more pronounced capacity fade occurred for the polyanion-terminated film than the polycation-terminated film. Taken together, this highlights how oppositely charged radical-containing polyelectrolytes can form electroactive coatings for possible applications in energy storage or sensing.
更多
查看译文
关键词
active thin films,thin films,polymers,layer-by-layer,radical-containing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要