Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fatigue life assessment of polyamide 12 processed by selective laser sintering. Damage modelling according to fracture mechanics

RAPID PROTOTYPING JOURNAL(2022)

Cited 2|Views3
No score
Abstract
Purpose Polyamide 12 (PA12) processed by the additive manufacturing technique of selective laser sintering (SLS) is acquiring a leading role in cutting-edge technological sectors pertaining to transport and biomedical among others. In many of these applications, design requirements must ensure fatigue structural integrity. One of the characteristic features of these SLS PA12 is the layer-wise structure that may influence the mechanical response. Therefore, this paper aims to assess the fatigue life behavior of PA12, focusing on the effect of the load direction with respect to the load orientation. Design/methodology/approach With the aim of analyzing the effect of the load direction with respect to the layer wise structure, fatigue tests on plain samples of SLS PA12 were carried out with the load applied parallel and perpendicular to the layer planes. The S-N stress life curves and the fatigue limit at 106 cycles were determined at room temperature and at a stress ratio of 0.1. The fracture surfaces were inspected to evaluate the damage evolution, modeled via the fracture mechanics methodology to obtain the fracture parameters. Findings The fatigue resistance was better when the load was applied parallel than when was applied perpendicularly to the layered structure. The analysis of the postmortem specimens evidenced three regions. The inspection of the fatigue macro crack growth region revealed that crazing was the mechanism responsible of nucleation and growth of damage till a macroscopic crack was generated, as well as of the consequent crack advancement. The calculated fracture parameters computed from the application of the fracture mechanics approach were similar to those obtained from standardized fracture tests, except when the stress levels were close to the yield strength. Originality/value The fatigue knowledge of polymers, and especially of polymers processed via additive manufacturing techniques, is still scarce. Therefore, the value of this investigation is not only to obtain fatigue data that could be used for structural design with SLS PA12 materials but also to advance in the knowledge of damage evolution during the fatigue process.
More
Translated text
Key words
Polyamide 12, Selective laser sintering, Stress life (S-N) curves, Fatigue limit, Fracture mechanics modelling
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined