Climate change impacts on ticks and tick-borne infections

Biologia(2021)

引用 17|浏览0
暂无评分
摘要
Evidence climate change is impacting ticks and tick-borne infections is generally lacking. This is primarily because, in most parts of the world, there are no long-term and replicated data on the distribution and abundance of tick populations, and the prevalence and incidence of tick-borne infections. Notable exceptions exist, as in Canada where the northeastern advance of Ixodes scapularis and Lyme borreliosis in the USA prompted the establishment of tick and associated disease surveillance. As a result, the past 30 years recorded the encroachment and spread of I. scapularis and Lyme borreliosis across much of Canada concomitant with a 2-3 °C increase in land surface temperature. A similar northerly advance of I. ricinus [and associated Lyme borreliosis and tick-borne encephalitis (TBE)] has been recorded in northern Europe together with expansion of this species’ range to higher altitudes in Central Europe and the Greater Alpine Region, again concomitant with rising temperatures. Changes in tick species composition are being recorded, with increases in more heat tolerant phenotypes (such as Rhipicephalus microplus in Africa), while exotic species, such as Haemaphysalis longicornis and Hyalomma marginatum , are becoming established in the USA and Southern Europe, respectively. In the next 50 years these trends are likely to continue, whereas, at the southern extremities of temperate species’ ranges, diseases such as Lyme borreliosis and TBE may become less prevalent. Where socioeconomic conditions link livestock with livelihoods, as in Pakistan and much of Africa, a One Health approach is needed to tackling ticks and tick-borne infections under the increasing challenges presented by climate change.
更多
查看译文
关键词
Climate change, Tick range expansion, Tick-borne pathogen, Lyme borreliosis, Tick-borne encephalitis, Tick and disease modelling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要