Computational Enzyme Stabilization Can Affect Folding Energy Landscapes and Lead to Catalytically Enhanced Domain-Swapped Dimers

ACS CATALYSIS(2021)

引用 10|浏览12
暂无评分
摘要
The functionality of an enzyme depends on its unique three-dimensional structure, which is a result of the folding process when the nascent polypeptide follows a funnel-like energy landscape to reach a global energy minimum. Computer-encoded algorithms are increasingly employed to stabilize native proteins for use in research and biotechnology applications. Here, we reveal a unique example where the computational stabilization of a monomeric alpha/beta-hydrolase enzyme (T-m = 73.5 degrees C; Delta T-m > 23 degrees C) affected the protein folding energy landscape. The introduction of eleven single-point stabilizing mutations based on force field calculations and evolutionary analysis yielded soluble domain-swapped intermediates trapped in local energy minima. Crystallographic structures revealed that these stabilizing mutations might (i) activate cryptic hinge-loop regions and (ii) establish secondary interfaces, where they make extensive noncovalent interactions between the intertwined protomers. The existence of domain-swapped dimers in a solution is further confirmed experimentally by data obtained from small-angle X-ray scattering (SAXS) and cross-linking mass spectrometry. Unfolding experiments showed that the domain-swapped dimers can be irreversibly converted into native-like monomers, suggesting that the domain swapping occurs exclusively in vivo. Crucially, the swapped-dimers exhibited advantageous catalytic properties such as an increased catalytic rate and elimination of substrate inhibition. These findings provide additional enzyme engineering avenues for next-generation biocatalysts.
更多
查看译文
关键词
protein folding, protein design, alpha/beta-hydrolase, haloalkane dehalogenase, domain swapping, energy landscape, oligonicrization, catalytic efficiency, substrate inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要