Design of inertial fusion implosions reaching the burning plasma regime

A. L. Kritcher,C. V. Young,H. F. Robey,C. R. Weber,A. B. Zylstra,O. A. Hurricane,D. A. Callahan,J. E. Ralph,J. S. Ross,K. L. Baker,D. T. Casey, D. S. Clark,T. Döppner,L. Divol,M. Hohenberger,L. Berzak Hopkins,S. Le Pape,N. B. Meezan,A. Pak,P. K. Patel,R. Tommasini, S. J. Ali,P. A. Amendt,L. J. Atherton,B. Bachmann,D. Bailey,L. R. Benedetti,R. Betti,S. D. Bhandarkar, J. Biener, R. M. Bionta,N. W. Birge, E. J. Bond, D. K. Bradley,T. Braun, T. M. Briggs, M. W. Bruhn,P. M. Celliers,B. Chang,T. Chapman,H. Chen, C. Choate,A. R. Christopherson,J. W. Crippen,E. L. Dewald,T. R. Dittrich,M. J. Edwards,W. A. Farmer, J. E. Field,D. Fittinghoff,J. A. Frenje,J. A. Gaffney,M. Gatu Johnson, S. H. Glenzer,G. P. Grim, S. Haan, K. D. Hahn,G. N. Hall,B. A. Hammel,J. Harte,E. Hartouni,J. E. Heebner, V. J. Hernandez,H. Herrmann,M. C. Herrmann,D. E. Hinkel,D. D. Ho,J. P. Holder,W. W. Hsing,H. Huang,K. D. Humbird,N. Izumi,L. C. Jarrott,J. Jeet,O. Jones, G. D. Kerbel,S. M. Kerr,S. F. Khan,J. Kilkenny,Y. Kim,H. Geppert-Kleinrath,V. Geppert-Kleinrath,C. Kong,J. M. Koning, M. K. G. Kruse,J. J. Kroll,B. Kustowski,O. L. Landen,S. Langer,D. Larson,N. C. Lemos, J. D. Lindl,T. Ma,M. J. MacDonald,B. J. MacGowan, A. J. Mackinnon,S. A. MacLaren,A. G. MacPhee,M. M. Marinak,D. A. Mariscal,E. V. Marley,L. Masse,K. Meaney,P. A. Michel,M. Millot,J. L. Milovich, J. D. Moody,A. S. Moore, J. W. Morton,T. Murphy,K. Newman,J.-M. G. Di Nicola,A. Nikroo,R. Nora,M. V. Patel,L. J. Pelz,J. L. Peterson,Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice,H. Rinderknecht,M. Rosen,M. S. Rubery, J. D. Salmonson,J. Sater,S. Schiaffino,D. J. Schlossberg,M. B. Schneider, C. R. Schroeder,H. A. Scott, S. M. Sepke, K. Sequoia,M. W. Sherlock,S. Shin, V. A. Smalyuk,B. K. Spears, P. T. Springer,M. Stadermann,S. Stoupin,D. J. Strozzi,L. J. Suter,C. A. Thomas, R. P. J. Town,C. Trosseille,E. R. Tubman,P. L. Volegov,K. Widmann, C. Wild,C. H. Wilde,B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth,M. Yamaguchi, S. T. Yang, G. B. Zimmerman

NATURE PHYSICS(2022)

引用 65|浏览73
暂无评分
摘要
In a burning plasma state 1 – 7 , alpha particles from deuterium–tritium fusion reactions redeposit their energy and are the dominant source of heating. This state has recently been achieved at the US National Ignition Facility 8 using indirect-drive inertial-confinement fusion. Our experiments use a laser-generated radiation-filled cavity (a hohlraum) to spherically implode capsules containing deuterium and tritium fuel in a central hot spot where the fusion reactions occur. We have developed more efficient hohlraums to implode larger fusion targets compared with previous experiments 9 , 10 . This delivered more energy to the hot spot, whereas other parameters were optimized to maintain the high pressures required for inertial-confinement fusion. We also report improvements in implosion symmetry control by moving energy between the laser beams 11 – 16 and designing advanced hohlraum geometry 17 that allows for these larger implosions to be driven at the present laser energy and power capability of the National Ignition Facility. These design changes resulted in fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy 18 , 19 . Radiation hydrodynamics simulations 20 , 21 show energy deposition by alpha particles as the dominant term in the hot-spot energy balance, indicative of a burning plasma state.
更多
查看译文
关键词
Laser-produced plasmas,Nuclear fusion and fission,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要