Closure to "Application of AI Approaches to Estimate Discharge Coefficient of Novel Kind of Sharp-Crested V-Notch Weirs"

JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING(2023)

引用 4|浏览0
暂无评分
摘要
In this study, the hydraulic features of the SCVW (a novel type of sharp-crested V-notch weirs) were scrutinized in the popular vertex angles theta, i.e., 30 degrees, 45 degrees, 60 degrees, 90 degrees, 120 degrees, 128 degrees, and 150 degrees, under aerated, steady and free overflow conditions in an open channel for large physical models. To assess the changes of the discharge coefficient of the SCVW (i.e., C-dSCVW) versus weir height and theta, widespread laboratory works were performed by measuring the water head over the crest of the weir and the discharge. Special formulas for the C-dSCVW in the theta=60 degrees were checked, and an appropriate empirical equation was recommended. The calculated C-dSCVW by the proposed equation was within 0%-10% of the measured values. Three types of nonparametric artificial intelligence (AI) methods, namely, support vector regression (SVR), gene expression programming (GEP), and a robust hybrid model entitled hybrid (SVR-ACO) were developed to estimate the C-dSCVW. For the sake of modeling, 196 experimental datasets were applied in the mentioned methods to evaluate the C-dSCVW by taking into consideration the dimensionless variables which impact the determining procedure of the C-dSCVW. In this modeling, by varying the architecture and core factors of the aforementioned methods, several scenarios were defined. The generated mathematical equation of C-dSCVW by the best scenario of the GEP was compared with the corresponding measured values in which the results were in 0%-10%. According to the attained statistical indices, scatter plots, and the values of the total grade (TG) technique, the hybrid SVR(RBF)-ACO model was determined as the superior and optimal method to estimate the C-dSCVW with high performance and accuracy. (C) 2022 American Society of Civil Engineers.
更多
查看译文
关键词
estimate discharge coefficient,sharp-crested,v-notch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要