The impact of thermal reprocessing of 3D printable polymers on their mechanical performance and airborne pollutant profiles

JOURNAL OF POLYMER RESEARCH(2021)

引用 4|浏览1
暂无评分
摘要
The alterations in volatile organic compound (VOC) and ultrafine particulate (UFP) matter emission profiles following thermal reprocessing of multiple materials were examined. Additionally, mechanical performance of the materials was studied. The VOCs were identified by collecting air samples with Tenax® TA tubes and analyzing them with a GC–MS system. UFP concentrations were monitored with a portable ultrafine particle counter. Total VOC emissions of all materials were reduced by 28–68% after 5 thermal cycles (TCs). However, slight accumulation of 1,4-dioxane was observed with poly(lactic acid) materials. UFP emissions were reduced by 45–88% for 3D printing grade materials over 5 TCs but increased by 62% in the case of a waste plastic material over 3 TCs. The mechanical performance of the materials was investigated by measuring their tensile strengths (TSs) and elastic moduli (EM) with an axial-torsion testing system. The reprocessed materials expressed fluctuations in their 3D printing qualities and mechanical performances. The mechanical performances were observed to reduce only slightly after 5 TCs, and the trend was observable only after the data was mass-normalized. The TSs of the samples were reduced by 10–24%, while the EM were reduced by 1–9% after 5 TCs. The TS and EM of one material were increased by 14 and 33%, respectively. In conclusion, recycled polymers are plausible 3D printing feedstock alternatives as they possess acceptable mechanical performance and low emittance according to this study. Furthermore, non-3D printing grade polymers may be applied in a 3D printer with caution.
更多
查看译文
关键词
Additive manufacturing,Tensile strength,Plastics,Thermal treatment,Volatile organic compounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要