Subgrid-scale models of isotropic turbulence need not produce energy backscatter

JOURNAL OF FLUID MECHANICS(2022)

引用 4|浏览1
暂无评分
摘要
This investigation questions the importance of inverse interscale energy fluxes, the so-called energy backscatter, for the modelling of the energy cascade in large-eddy simulations (LES) of turbulent flows. The invariance of the filtered Navier-Stokes equations to divergence-preserving transformations of the subgrid-scale (SGS) stress tensor is exploited here to explore alternative representations of the local SGS energy fluxes. Numerical optimisation procedures are applied to the SGS stress tensor - obtained by filtering isotropic turbulence flow fields - to find alternative stresses that satisfy the filtered Navier-Stokes equations, but that produce negligible backscatter. These alternative SGS stresses show that backscatter represents not a flux of energy from the subgrid to the resolved scales, but conservative spatial fluxes, and that it need not be modelled to reproduce the local energetic exchange between the resolved and the subgrid scales in LES. From the perspective of statistical mechanics, it is argued that this is a consequence of the strong statistical irreversibility of inertial-range dynamics, which precludes inverse energy cascades even in a local sense. These findings show that the energy cascade is strongly unidirectional locally, and that it can be modelled as an irreversible sink of energy, justifying the extended use of purely dissipative SGS models in LES.
更多
查看译文
关键词
turbulence modelling, turbulence simulation, isotropic turbulence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要