Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: Thermal, mechanical properties and biocompatibility for tissue engineering

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS(2022)

Cited 25|Views5
No score
Abstract
The HNTs (Halloysite nanotubes) were modified with chitosan and reinforced in the PVA/PVP matrix to fabricate the blend nanocomposite films for the biomedical field. The blend nanocomposite films were synthesized through the solution casting technique. The physico-chemical, thermal and mechanical properties were investigated to estimate their relevance for the biomedical application. Mechanical and thermal properties obtained were correlated to the morphological analysis via FE-SEM and AFM. The results of WCA, swelling behavior, and in-vitro enzymatic degradation studies were in accordance with the morphological properties. The overall results obtained revealed that nanocomposite films are formed with improved thermo-mechanical properties, uniform distribution, surface roughness, and enzymatic degradation, with a decrease in swelling ratio and hydrophilicity. The in-vitro cell line studies carried out via MTT (Methyl Thiazolyl Tetrazolium) and AO-EB (Acridine orange-Ethidium bromide) assay for cell proliferation and adhesion activity of blend films showed their magnificent proliferative and adhesive activity compared to pure PVA/PVP film (118.31 +/- 0.68% proliferation for 5 wt%). The hemocompatibility of the nanocomposite films was determined via RBCs (0.46 +/- 0.05% hemolysis for 5 wt %). Thus the blend films could be potentially used in the tissue engineering field.
More
Translated text
Key words
Modified halloysite nanotubes, Chitosan, PVA, PVP nanocomposite films, Hemocompatibility, Tissue engineering, Cytocompatibility
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined