Density and Dimensional Stability of a Wood-polymer Nano-Composite from Fast-growing Wood

BIORESOURCES(2022)

Cited 0|Views4
No score
Abstract
The characteristics of ganitri wood can be improved via wood impregnation. The objective of this research was to analyze the density and dimensional stability of a wood polymer nano-composite, i.e., impregnated ganitri wood with a mixture of melamine formaldehyde furfuryl alcohol and nano-SiO2. The results showed that the impregnation process improved the physical properties of the impregnated ganitri wood. Impregnation with 0.5% melamine-formaldehyde furfuryl alcohol (MFFA)-nano SiO2 had a significant effect on the density, weight percent gain, anti-swelling efficiency, bulking effect (BE), and water uptake (WU). Increased percentage of density and BE values after being treated by MFFA with 0.5% nano-SiO2 were 51.2% and 311.7%, respectively. The percentage decrease in WU was 47.5% (MFFA with 0.5% nano-SiO2). X-ray diffraction analysis verified a decrease in the crystallinity of the wood cellulose. The melamine formaldehyde furfuryl alcohol and nano-SiO2 polymers were found to cover the wood cell walls and lumens (based on scanning electron microscopy images). The formaldehyde emissions of the wood polymer nano-composite decreased. Therefore, it is possible to produce more environmentally friendly materials through wood polymer nano-composites.
More
Translated text
Key words
Impregnation, Fast-growing species, Nano-SiO2, MFFA, Physical properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined