Application of Copper Mining Waste in Radionuclide and Heavy Metal Immobilization

CLEAN-SOIL AIR WATER(2022)

Cited 1|Views6
No score
Abstract
Copper slag flotation tailings (CSFT), as the end waste from copper mining, are evaluated for radionuclide and heavy metal immobilization. Characterization of CSFT based on grain size and mineral composition, surface functional groups, pH and electrical conductivity in aqueous media, thermogravimetric analysis (TGA), determination of characteristic temperatures in sample melting process, leachability, and toxicity tests is conducted. The screening sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), and Pb(II) inactive isotopes from single-component solutions is performed. The Cd(II) ions show better sorption potential than other ions, with a sorption capacity of 0.08 mmol g(-1) at the highest initial concentration. Sorption decreases in the sequence Cd(II) > Pb(II) > Zn(II) > Mn(II) > Ni(II) > Co(II) at all initial concentrations. Although CSFT shows lower sorption capability than synthetic sorbents based on fayalite and magnetite, its inexpensiveness and substantial accessible amount represent great advantages in wider utilization.
More
Translated text
Key words
flotation, recycling, reuse, slag, sorption
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined