Childhood type 1 diabetes is associated with abnormal bone development

PEDIATRIC DIABETES(2022)

引用 1|浏览9
暂无评分
摘要
Objective To describe bone mineral density (BMD), bone structure, and fracture prevalence in adolescents with type 1 diabetes (T1D) and explore their associations with glycemic control and microvascular complications. Research design and methods Cross sectional study of 64 adolescents (38 males) with T1D duration >10 years who underwent dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), fracture survey, plantar fascia thickness, and microvascular complications assessment. Results Mean age was 16.6 +/- 2.1 years, diabetes duration 12.8 +/- 2.2 years and HbA1c 8.9 +/- 1.7% (74 mmol/mol). Fracture prevalence was 50%. DXA areal BMD (Z-score) was reduced for femoral neck (-0.5 +/- 1.3, p = 0.008) and arm (-0.4 +/- 1.0, p < 0.001), while total areal BMD and lumbar spine BMD were normal. In pQCT (Z-score), trabecular volumetric BMD (vBMD) was reduced for tibia (-0.4 +/- 0.8, p < 0.001) and radius (-0.8 +/- 1.4, p < 0.001) whereas cortical vBMD was increased at both sites (tibia: 0.5 +/- 0.6, p < 0.001, radius: 0.7 +/- 1.5, p < 0.001). Muscle cross-sectional area (CSA) was reduced for upper (-0.6 +/- 1.2, p < 0.001) and lower (-0.4 +/- 0.7, p < 0.001) limbs. DXA total areal BMD was positively correlated with BMI (p < 0.01) and age at T1D diagnosis (p = 0.04). Lower radial bone CSA, total and lumbar spine BMD were associated with autonomic nerve dysfunction. HbA1c, diabetes duration, fracture history and other microvascular complications were not significantly associated with bone parameters. Conclusions Adolescents with childhood-onset T1D have site-specific bone deficits in upper and lower limbs but normal total and lumbar spine BMD. T1D appears to have differential effects on trabecular and cortical bone compartments. Future longitudinal analysis is warranted to examine whether these changes translate in to increased fracture risk.
更多
查看译文
关键词
adolescent, bone health, child, DXA, pQCT, type 1 diabetes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要