谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Lithospheric conductors reveal source regions of convergent margin mineral systems

SCIENTIFIC REPORTS(2022)

引用 8|浏览10
暂无评分
摘要
The clean energy transition will require a vast increase in metal supply, yet new mineral deposit discoveries are declining, due in part to challenges associated with exploring under sedimentary and volcanic cover. Recently, several case studies have demonstrated links between lithospheric electrical conductors imaged using magnetotelluric (MT) data and mineral deposits, notably Iron Oxide Copper Gold (IOCG). Adoption of MT methods for exploration is therefore growing but the general applicability and relationship with many other deposit types remains untested. Here, we compile a global inventory of MT resistivity models from Australia, North and South America, and China and undertake the first quantitative assessment of the spatial association between conductors and three mineral deposit types commonly formed in convergent margin settings. We find that deposits formed early in an orogenic cycle such as volcanic hosted massive sulfide (VHMS) and copper porphyry deposits show weak to moderate correlations with conductors in the upper mantle. In contrast, deposits formed later in an orogenic cycle, such as orogenic gold, show strong correlations with mid-crustal conductors. These variations in resistivity response likely reflect mineralogical differences in the metal source regions of these mineral systems and suggest a metamorphic-fluid source for orogenic gold is significant. Our results indicate the resistivity structure of mineralized convergent margins strongly reflects late-stage processes and can be preserved for hundreds of millions of years. Discerning use of MT is therefore a powerful tool for mineral exploration.
更多
查看译文
关键词
Geochemistry,Geology,Geophysics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要