Astroparticle Constraints from Cosmic Reionization and Primordial Galaxy Formation

UNIVERSE(2022)

引用 4|浏览9
暂无评分
摘要
We derived astroparticle constraints in different dark matter scenarios that are alternatives to cold dark matter (CDM): thermal relic warm dark matter, WDM; fuzzy dark matter, psi DM; self-interacting dark matter, SIDM; sterile neutrino dark matter, vDM. Our framework is based on updated determinations of the high-redshift UV luminosity functions for primordial galaxies to redshift z similar to 10, on redshift-dependent halo mass functions in the above DM scenarios from numerical simulations, and on robust constraints on the reionization history of the Universe from recent astrophysical and cosmological datasets. First, we built an empirical model of cosmic reionization characterized by two parameters, namely the escape fraction f(esc) of ionizing photons from primordial galaxies, and the limiting UV magnitude M-UV(lim) down to which the extrapolated UV luminosity functions steeply increased. Second, we performed standard abundance matching of the UV luminosity function and the halo mass function, obtaining a relationship between UV luminosity and the halo mass, whose shape depends on an astroparticle quantity X specific to each DM scenario (e.g., WDM particle mass); we exploited such a relationship to introduce (in the analysis) a constraint from primordial galaxy formation, in terms of the threshold halo mass above which primordial galaxies can efficiently form stars. Third, we performed Bayesian inference on the three parameters f(esc), M-UV(lim), and X via a standard MCMC technique, and compared the outcomes of different DM scenarios on the reionization history. We also investigated the robustness of our findings against educated variations of still uncertain astrophysical quantities. Finally, we highlight the relevance of our astroparticle estimates in predicting the behavior of the high-redshift UV luminosity function at faint, yet unexplored magnitudes, which may be tested with the advent of the James Webb Space Telescope.
更多
查看译文
关键词
cosmic reionization, dark matter, galaxy formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要