On the annual and semi-annual components of variations in extent of Arctic and Antarctic sea-ice

Geosciences(2022)

Cited 0|Views7
No score
Abstract
The time series of northern hemisphere (NHSI) and southern hemisphere (SHSI) sea-ice extent are submitted to singular spectral analysis (SSA). The components are analyzed with Laplace's formulation of the Liouville-Euler system. As already shown in a previous work, the trends observed in the time series are quasi linear, decreasing for NHSI and increasing for SHSI. The amplitude of annual variations in the Antarctic is double that in the Arctic, they are in phase opposition, modulated. The semi-annual components are in quadrature. The first 3 components of both NHSI and SHSI at 1, 1/2 and 1/3 yr account for more than 95% of the signal variance. We complement previous analyses of variations in pole position (PM = m1, m2) and length of day (lod). Whereas SSA of lod is dominated by the same first 3 components as sea-ice, SSA of PM contains only the 1 yr and the Chandler components. The 1 yr component of NHSI is in phase with that of lod and in phase opposition with m1. The reverse holds for the 1 yr component of SHSI. We note that the semi-annual component appears in lod not in m1. The annual and semi-annual components of NHSI and SHSI are much larger than the trends observed since 1978, that leads us to test whether a first order geophysical or astronomical forcing should not be preferred to the mechanisms generally suggested as a forcing factor of the trends. The lack of modulation of the largest forced component suggests an alternate mechanism. In Laplace's paradigm, the torques exerted by the Moon, Sun and planets play the leading role as the source of forcing of many geophysical phenomena. These forces lead to changes in the inclination of the Earth's rotation axis, setting Earth masses in motion and resulting in thermal dissipation. It is variations in inclination of the rotation axis that lead to the large annual components of melting and re-freezing of sea-ice.
More
Translated text
Key words
sea ice,seasonal forcing,Taylor-Couette flow
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined