Chrome Extension
WeChat Mini Program
Use on ChatGLM

Towards Resiliency of Heavy Vehicles through Compromised Sensor Data Reconstruction

Data and Application Security and Privacy(2022)

Cited 0|Views12
No score
Abstract
ABSTRACTAlmost all aspects of modern automobiles are controlled by embedded computers, known as Electronic Control Units (ECUs). ECUs are connected with each other over a Controller Area Network (CAN) network. ECUs communicate with each other and control the automobile's behavior using messages. Heavy vehicles, unlike passenger cars, are constructed using ECUs manufactured by different Original Equipment Manufacturers (OEMs). For reasons of interoperability, the Society of Automotive Engineers (SAE) mandates that all ECUs should communicate using the standardized SAE-J1939 protocol that gives semantics to the signals transmitted on the CAN network. Security concerns have been historically ignored in protocols and standards. Consequently, an ECU having malicious code can spoof other ECUs, e.g., a message can be injected through the OBD-II port or the telematics unit into the internal network to interfere with the behavior of the vehicle. Intrusion Detection Systems (IDS) have been proposed and utilized to detect various types of security attacks. However, such systems are only capable of detecting attacks and cannot mitigate them. A compromised ECU may generate invalid data values; even if such invalid values are detected, there is still a need to counter their effects. Almost all prior works focus on detecting attacks. We demonstrate how to make the vehicle resilient to attacks. We analyze the log files of real driving scenarios and show ECUs are significantly dependent on other ECUs to operate. We demonstrate that parameters of a compromised ECU can be reconstructed from those of other non-compromised ECUs to allow the vehicle to continue operation and make it resilient to attacks. We achieve this by modeling the behavior of an ECU using the multivariate Long Short-Term Memory (LSTM) neural network. We then reconstruct compromised ECU values using information obtained from trustworthy ECUs. Despite some levels of errors, our model can reconstruct trustworthy data values that can be substituted for values generated by compromised ECUs. The error between the reconstructed values and the correct ones is less than 6% of the operating range for the compromised ECU, which is significantly low and can be substituted. Our proposed approach makes the vehicle resilient without requiring changes to the internal architecture.
More
Translated text
Key words
Heavy Vehicle, Security, Resiliency, LSTM Network
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined