Chrome Extension
WeChat Mini Program
Use on ChatGLM

Abstract #3 How Far Can We Go? - WEB Technology for the Treatment of Sidewall IA. Initial Experience in a Single Institution

World Neurosurgery(2022)

Cited 0|Views13
No score
Abstract
To assess the ability of the “wall-carving (WC) image technique”, which uses vascular images from 3-dimensional digital subtraction angiograms (3DDSAs). Also, to verify the accuracy of the resulting 3D-printed hollow models of intracranial aneurysms.The 3DDSA data from 9 aneurysms were processed to obtain volumetric models suitable for the stereolithography apparatus. The resulting models were filled with iodinated contrast media. 3D rotational angiography of the models was carried out, and the aneurysm geometry was compared with the original patient data. The accuracy of the 3D-printed hollow models’ sizes and shapes was evaluated using the nonparametric Wilcoxon signed-rank test and the Dice coefficient index.The aneurysm volumes ranged from 34.1 to 4609.8 mm3 (maximum diameters 5.1–30.1 mm), and no statistically significant differences were noted between the patient data and the 3D-printed models (P = 0.4). Shape analysis of the aneurysms and related arteries indicated a high level of accuracy (Dice coefficient index value: 88.7%–97.3%; mean ± SD: 93.6% ± 2.5%). The vessel wall thickness of the 3D-printed hollow models was 0.4 mm for the parent and 0.2 mm for small branches and aneurysms, almost the same as the patient data.The WC technique, which involves volume rendering of 3DDSAs, can provide a detailed description of the contrast enhancement of intracranial vessels and aneurysms at arbitrary depths. These models can provide precise anatomic information and be used for simulations of endovascular treatment.
More
Translated text
Key words
sidewall ia,web technology,treatment
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined