Transcriptomic profiles of Florida pompano (Trachinotus carolinus) gill following infection by the ectoparasite Amyloodinium ocellatum

Fish & Shellfish Immunology(2022)

引用 4|浏览8
暂无评分
摘要
The dinoflagellate Amyloodinium ocellatum is an important pathogenic parasite infecting cultured marine and brackish water fishes worldwide. This includes cultured Florida pompano (Trachinotus carolinus), which is one of the most desirable marine food fish with high economic value in the USA. A. ocellatum infects fish gills and causes tissue damage, increased respiratory rate, reduced appetite, and mortality, especially in closed aquaculture systems. This study mimicked the natural infection of A. ocellatum in cultured pompano and conducted a transcriptomic comparison of gene expression in the gills of control and A. ocellatum infected fish to explore the molecular mechanisms of infection. RNA-seq data revealed 604 differentially expressed genes in the infected fish gills. The immunoglobulin genes (including IgM/T) augmentation and IL1 inflammation suppression were detected after infection. Genes involved in reactive oxygen species mediating parasite killing were also highly induced. However, excessive oxidants have been linked to oxidative tissue damage and apoptosis. Correspondingly, widespread down-regulation of collagen genes and growth factor deprivation indicated impaired tissue repair, and meanwhile the key executor of apoptosis, caspase-3 was highly expressed (25.02-fold) in infected fish. The infection also influenced the respiratory gas sensing and transport genes and established hypoxic conditions in the gill tissue. Additionally, food intake and lipid metabolism were also affected. Our work provides the transcriptome sequencing of Florida pompano and provides key insights into the acute pathogenesis of A. ocellatum. This information can be utilized for designing optimal disease surveillance strategies, future selection for host resistance, and development of novel therapeutic measures.
更多
查看译文
关键词
Florida pompano,Amyloodinium ocellatum,RNA-seq,Immune response
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要