Analysis of indoor set-point temperature of split-type ACs on thermal comfort and energy savings for office buildings in hot-humid climates

Energy and built environment(2022)

引用 8|浏览1
暂无评分
摘要
• Performance of split-unit air conditioners for offices in Ghana were assessed. • Indoor control temperature for thermal comfort and energy savings were considered. • Baseline cooling temperature to ensure thermal comfort was 21 °C. • Indoor setpoint temperature control should not exceed 26 °C for hot-humid climates. • Low rated air conditioners must operate at high temperatures to reduce energy. In hot-humid climates, particularly in sub-Saharan Africa (SSA), ambient temperatures and relative humidity are as high as 35 °C and 84%, respectively, requiring the use of mechanical cooling systems for indoor thermal comfort. Split-type vapor-compression air-conditioners (SVAC) are mainly used for space cooling in SSA and consume 60–80% of total energy consumption in commercial and public buildings. Appropriate control strategy of the indoor set-point temperature of SVAC can result in significant energy savings in these buildings. In this study, modeling and dynamic simulation have been conducted using EnergyPlus to predict the energy saving potential and indoor thermal comfort of buildings in hot-humid climates by controlling set-point temperature of the SVAC. In a case study, climatic data for Ghana, was used to predict the energy saving potential and indoor thermal comfort. The study results revealed that, to ensure indoor thermal comfort at high outdoor temperature condition of 35 °C, the least and optimum set-point temperatures of the SVAC should be 21 °C and 25 °C, respectively. On the other hand, for low outdoor temperature condition, the least and optimum set-point temperatures were 22 °C and 26 °C, respectively. Considering 1-star and 2-star rated SVACs which are dominantly used in Ghana, operating at 21–25 °C in the case of high outdoor conditions, and 22–26 °C for low outdoor conditions relative to the least temperatures resulted in energy savings of 8–33% and 12-44%, respectively.
更多
查看译文
关键词
Hot-humid climate,Air-conditioners,Indoor thermal comfort,Set-point temperatures,Energy savings
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要