Chrome Extension
WeChat Mini Program
Use on ChatGLM

Beta 2 adrenergic receptor and mu opioid receptor interact to potentiate the aggressiveness of human breast cancer cell by activating the glycogen synthase kinase 3 signaling

Breast Cancer Research(2022)

Cited 7|Views13
No score
Abstract
Background Opioid and beta-adrenergic receptors are recently shown to cross talk via formation of receptor heterodimers to control the growth and proliferation of breast cancer cells. However, the underlying cell signaling mechanism remained unclear. Methods To determine the effect of the interaction of the two systems in breast cancer, we employed triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, CRISPR or chemical inhibition or activation of beta-adrenergic receptors (B2AR) and mu-opioid receptors (MOR) gene, and PCR array technology and studied aggressive tumor phenotype and signaling cascades. Results We show here that in triple-negative breast cancer cells, the reduction in expression B2AR and MOR by genetic and pharmacological tools leads to a less aggressive phenotype of triple-negative breast cancer cells in vitro and in animal xenografts. Genomic analysis indicates the glycogen synthase kinase 3 (GSK3) pathway as a possible candidate messenger system involved in B2AR and MOR cross talk. GSK3 inactivation in MDA-MB-231 and MDA-MB-468 cells induced similar phenotypic changes as the inhibition of B2AR and/or MOR, while a GSK3 activation by wortmannin reversed the effects of B2AR and/or MOR knockdown on these cells. GSK3 inactivation also prevents B2AR agonist norepinephrine or MOR agonist DAMGO from affecting MDA-MB-231 and MDA-MB-468 cell proliferation. Conclusions These data confirm a role of B2AR and MOR interaction in the control of breast cancer cell growth and identify a possible role of the GSK3 signaling system in mediation of these two receptors’ cross talk. Screening for ligands targeting B2AR and MOR interaction and/or the GSK3 system may help to identify novel drugs for the prevention of triple-negative breast cancer cell growth and metastasis.
More
Translated text
Key words
Triple-negative breast cancer, Growth and metastasis, Beta-adrenergic receptor, Mu-opioid receptor, GSK3 signaling, Gene knockdown, Pharmacological agents
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined