IFC-305 attenuates renal ischemia-reperfusion injury by promoting the production of hydrogen sulfide (H2S) via suppressing the promoter methylation of cystathionine gamma-lyase (CSE)

BIOENGINEERED(2022)

引用 0|浏览5
暂无评分
摘要
Renal ischemia-reperfusion (I/R) injury is characterized by elevated expression of homocysteine and decreased production of hydrogen sulfide (H2S). Cystathionine gamma-lyase (CSE) is a key factor in the onset of renal I/R injury, while IFC-305 can regulate the expression of CSE via epigenetic modification. Animal and cellular models of I/R were established in this work, followed by H&E staining to evaluate the extent of renal tissue injury under distinct conditions. Several methods, including ELISA, qPCR and Western blot, were used to analyze the levels of creatinine, CSE and H2S in various I/R models. Bisulfite sequencing PCR was used to evaluate the level of DNA methylation. The severity of the renal injury was significantly elevated in I/R rats and alleviated by the IFC-305 treatment. The level of Hcy was increased in the renal tissue and peripheral blood of I/R rats, while the IFC-305 treatment inhibited the expression of homocysteine (Hcy). Mechanistically, the DNA methylation in the CSE promoter was dramatically enhanced in I/R rats and cells, while the IFC-305 treatment reduced the level of DNA methylation in the CSE promoter. Moreover, the IFC-305 increased the concentration of H2S, which was reduced in I/R rats and cells. Finally, I/R rats and cells showed aberrantly high levels of MDA and superoxide, while the IFC-305 treatment reduced the levels of malondialdehyde (MDA) and superoxide. IFC-305, an adenosine derivative, promoted the production of H2S and attenuated renal injury in cellular and animal models of renal I/R by modifying the methylation status of the CSE promoter.
更多
查看译文
关键词
Renal I, R, homocysteine, CSE, H2S, oxidative stress, IFC-305
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要