Low-Cost Al-Doped Layered Cathodes with Improved Electrochemical Performance for Rechargeable Sodium-Ion Batteries

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 8|浏览9
暂无评分
摘要
O3-NaNi0.25Fe0.5Mn0.25O2 layered oxide is considered one of the most promising cathode candidates for sodium-ion batteries because of its advantages, such as its large capacity and low cost. However, the practical application of this material is limited by its poor cyclic stability and insufficient rate capability. Here, a strategy to substitute the Fe3+ in NaNi0.25Fe0.5Mn0.25O2 with Al3+ is adopted to address these issues. The substitution of Fe3+ with Al3+ enhances the framework stability and phase transition reversibility of the parent NaNi0.25Fe0.5Mn0.25O2 material by forming a stronger TM-O bond, which improves the cycling stability. Moreover, partial Al3+ substitution increases the interslab distance, providing a spacious path for Na+ diffusion and resulting in fast diffusion kinetics, which lead to improved rate capability. Consequently, the target NaNi0.25Fe0.5-xAlxMn0.25O2 sample with optimal x = 0.045 exhibits a remarkable electrochemical performance in a Na-ion cell with a large reversible capacity of 131.7 mA h g(-1), a stable retention of approximately 81.6% after cycling at 1C for 100 cycles, and a rate performance of 81.3 mA h g(-1) at 10C. This method might pave the way for novel means of improving the electrochemical properties of layered transitional-metal oxides and provide insightful guidance for the design of low-cost cathode materials.
更多
查看译文
关键词
sodium-ion batteries, cathodes, O3-type, Al substitution, low cost
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要