Chrome Extension
WeChat Mini Program
Use on ChatGLM

Responses of the Lodging Resistance of Summer Maize with Different Gene Types to Plant Density

AGRONOMY-BASEL(2022)

Cited 9|Views8
No score
Abstract
The appropriate increase of planting densities is the key to the obtainment of high-yield maize (Zea mays L.). However, lodging is a major constraint to limit grain yield under increased planting density in present maize production. Effects of population density on stalk lodging and agronomic traits were investigated using two maize cultivars Denghai 618 (DH618, low stalk with low spike height) and Xianyu335 (XY335, high stalk with high spike height). Four levels of density treatment were imposed by 1.5, 6.0, 7.5, and 9.0 x 10(4) plants ha(-1). Results showed that bending strength, rind penetration strength, maximum bending strength, dry weight, and internode diameter of maize were significantly decreased with the increase of planting density. The change range of XY335 with the increase of planting density was significantly larger than that of DH618, showing a high sensitivity to planting density. In addition, the thickness of cortex and vascular bundle sclerenchyma cells was significantly reduced with the increase of planting density. Compared with 1.5 x 10(4) plants ha(-1), the thickness of the above-ground third internode stem cortex was decreased by 9.64%, 12.72%, and 20.77% for DH618, and 19.26%, 30.49%, and 37.45% for XY335 at 6.0, 7.5, and 9.0 x 10(4) plants ha(-1), respectively. The thickness of vascular bundle sclerenchyma cells at 1.5 x 10(4) plants ha(-1) was decreased by 7.75%, 12.44%%, and 17.89% for DH618, 10.18%, 15.21%, and 24.73% for XY335, compared to those at 6.0, 7.5, and 9.0 x 10(4) plants ha(-1), respectively. Visibly, with the increase of planting density, the thickness of cortex and vascular bundle sclerenchyma cells, and the number of vascular bundles were all significantly decreased, resulting in the increase of lodging rate. However, the extent of variation in these parameters for short-plant height hybrid was less than those for high-plant height hybrid, and the yield of short-plant height hybrid was greater than that of high-plant height hybrid, indicating that short-plant height hybrid has better resistance to lodging with higher yield at higher planting density. Therefore, lodging resistance and yield can be improved through selection and breeding strategies that achieving synergistic development of diameter, dry weight per unit, and cortex thickness in maize basal internodes.
More
Translated text
Key words
planting density,maize,lodging resistance,agronomic traits
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined