Temporal and Spatial Characterization of Sediment Bacterial Communities From Lake Wetlands in a Plain River Network Region

Research Square (Research Square)(2021)

Cited 0|Views1
No score
Abstract
Abstract Sediment bacterial communities are a vital component of microbial communities in aquatic and terrestrial ecosystems and they play a critical role in lake wetlands. To investigate the effect of season, depth and regional environmental factors on the composition and diversity of bacterial communities in lake wetland sediments, the millions of Illumina reads (16S rRNA gene amplicons) from sediment bacterial communities in different seasons were examined using a technically consistent approach. Results from diversity index, relative abundance, principal component analysis (PCA), redundancy analysis (RDA) and linear discriminant analysis effect size (LEfSe) analysis indicated that the diversity of the bacterial community in summer was generally higher than in other seasons. Proteobacteria was the most abundant phylum in the sediment samples in different seasons (43.15%–57.41%) and different layers (39.66%–77.97%); the autumn sediments were enriched with Firmicutes (5.67%) and Chloroflexi (12.5%); in all four seasons the sediments were enriched with Betaproteobacteria (14.98%–23.45%), Gammaproteobacteria (11.98%–14.36%) and Deltaproteobacteria (8.68%–14.45%). In the bottom sediments (10–25 cm) Chloroflexi were abundant (average value 10.42%), while Bacteroidetes was the dominant phylum in the surface sediments; and redundancy analysis found that total phosphorus (TP) (P = 0.036) was the main environmental factor influencing the sediment bacterial community in different layers. This study provides a reference for further understanding the effects of seasonal changes on sediment microorganisms in lake wetlands.
More
Translated text
Key words
sediment bacterial communities,lake wetlands,plain river network region
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined