Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels

bioRxiv(2022)

引用 0|浏览0
暂无评分
摘要
Female Aedes aegypti mosquitoes feed on human blood, which they use to develop their eggs. It has been widely noted that some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. Here we tested mosquito attraction to skin odor collected from human subjects and identified people who are exceptionally attractive or unattractive to mosquitoes. Notably, these preferences were stable over several years, indicating consistent longitudinal differences in skin odor between subjects. We carried out gas chromatography/quadrupole time of flight-mass spectrometry to analyze the chemical composition of human skin odor in these subjects and discovered that highly attractive people produce significantly increased levels of carboxylic acids. Mosquitoes could reliably distinguish a highly attractive human from their weakly attractive counterparts unless we substantially diluted the odor of the “mosquito magnet.” This is consistent with the hypothesis that odor concentration is a major driver of differential attraction, rather than the less-favored skin odor blend containing repellent odors, although these are not mutually- exclusive. Mosquitoes detect carboxylic acids with a large family of odor-gated ion channels encoded by the Ionotropic Receptor gene superfamily. Mutant mosquitoes lacking any of the Ionotropic Receptor (IR) co-receptors Ir8a, Ir25a, and Ir76b, were severely impaired in attraction to human scent but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in “mosquito-magnet” human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要