Optimizing Textile Dyeing Wastewater Irrigation through Physiochemical Attributes of Tomato, Plant Nutrient Use Efficiency and Pollution Load Index of Irrigated Soil

semanticscholar(2022)

Cited 0|Views2
No score
Abstract
This experiment considers the seven different stages of textile dyeing effluents on tomato crop production in order to diminish the excess effluent treatment plant (ETP) cost and farmers net input cost. Seven different stages waste water (WW) with ground water (control) were collected and analyzed for physiochemical as well as heavy metals properties. T8 (mixed effluent) crossed the limit of agricultural standard for almost all physiological parameters such as TDS, TSS, EC, BOD, COD affording the highest value. T8 also delivered the highest cl- and heavy metals like Cd, Ni, Cr followed by T4 (2nd wash after bath drain) < T7 (Fixing treatment water). As a consequence, these provided comparatively higher enrichment factor (EF), pollution load index (PLI) and sodium absorption ratio (SAR) to transform fresh soil into “severe” and “slightly to moderate” saline. Correlation matrix demonstrated that EF and PLI of heavy metals (except Cd, Ni) were negatively related to yield, while positively related to SAR and fruit abortion. Although T6 (2nd wash after soaping) performed better in respect to growth, yield, yield attributes and nutrient use efficiency, principal component analysis (PCA) expressed that T2 (2nd wash after scouring and bleaching) and T3 (enzyme treated water) also belong to T6 and T1 group (ground water). Therefore, T2, T3 and T6 could be used to vegetable crop production up to some extent and to reduce ETP and agricultural input cost.
More
Translated text
Key words
textile dyeing wastewater irrigation,plant nutrient use efficiency,tomato,pollution load index
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined