Chrome Extension
WeChat Mini Program
Use on ChatGLM

Kerogen-specific isotope variations during the end-Permian mass extinction in South China

EARTH-SCIENCE REVIEWS(2022)

Cited 0|Views9
No score
Abstract
Sulfur isotopic variation has been widely used to study the environmental backdrop of the end-Permian mass extinction (EPME), although research to date has focused mostly on carbonate-associated sulfate (CAS) and pyrite. Study of the delta S-34 of kerogen, as well as of its H- and C-isotopic compositions, is relatively rare, although such data have the potential to shed new light on our understanding of the proximate driver of the EPME event. Here, we report paired delta S-34(pyrite) and delta S-34(kerogen) values for three widely spaced end-Permian marine sections from South China (Meishan, Shangsi, and Guanzi) that represent a transect from upper-slope (shallow-water) to basinal (deep-water) facies, as well as additional data for Meishan (i.e., delta S-34(CAS), delta H-2(kerogen), and delta C-13(kerogen)). Our results show that oxidation of isotopically light H2S in upwelled anoxic watermasses led to negative shifts of delta S-34(CAS), delta S-34(kerogen) and delta S-34(pyrite) in the ocean-surface layer during the Late Permian, and an increase of Delta S-34(CAS-kerogen) in the upper-slope Meishan section. High Delta S-34(kerogen-pyrite) (>10 parts per thousand) in the Meishan section indicates that slow pyritization occurred considerably below the sediment-water interface. In contrast, the lower-slope Shangsi and deep-water Guanzi sections show more negative delta S-34 values for both kerogen and pyrite, with smaller Delta S-34(kerogen-pyrite) (mainly 5-10 parts per thousand), implying open-system microbial sulfate reduction (MSR) in an anoxic deep watermass. A large negative shift in delta H-2(kerogen) from the uppermost Permian to the lowermost Triassic is most plausibly attributed to increased sedimentation rates and organic matter inputs due to collapse of terrestrial ecosystems. High sedimentation rates may have been contributed to observed subsequent increase of (poly) sulfide delta S-34 within the Lower Triassic in shallow-water facies. Our study thus demonstrates the utility of integrated analysis of S-isotopes in pyrite, kerogen, and CAS, coupled with H- and C-isotopic data of kerogen for tracking dynamic environmental changes during the Permian-Triassic transition and possibly other major events in Earth history.
More
Translated text
Key words
Kerogen, Pyrite, CAS, delta S-34, delta H-2, delta C-13, End-Permian mass extinction, South China
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined