Federated Multi-task Graph Learning

ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY(2022)

引用 0|浏览13
暂无评分
摘要
Distributed processing and analysis of large-scale graph data remain challenging because of the high-level discrepancy among graphs. This study investigates a novel subproblem: the distributed multi-task learning on the graph, which jointly learns multiple analysis tasks from decentralized graphs. We propose a federated multi-task graph learning (FMTGL) framework to solve the problem within a privacy-preserving and scalable scheme. Its core is an innovative data-fusion mechanism and a low-latency distributed optimization method. The former captures multi-source data relatedness and generates universal task representation for local task analysis. The latter enables the quick update of our framework with gradients sparsification and tree-based aggregation. As a theoretical result, the proposed optimization method has a convergence rate interpolates between O(1/T) and O(1/root T), up to logarithmic terms. Unlike previous studies, our work analyzes the convergence behavior with adaptive stepsize selection and non-convex assumption. Experimental results on three graph datasets verify the effectiveness and scalability of FMTGL.
更多
查看译文
关键词
Federated learning,graph learning,multi-task learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要