SHREC 2021: CryoET Track

Ilja Gubins,Marten L. Chaillet,M. Cristina Trueba,Remco C. Veltkamp, Friedrich Förster,Xiao Wang,Daisuke Kihara, Emmanuel Moebel, Nguyen P. Nguyen, Tommi White,Filiz Bunyak,Giorgos Papoulias,Stavros Gerolymatos, Evangelia I. Zacharaki, Konstantinos Moustakas,Xiangrui Zeng,Sinuo Liu,Min Xu,Yaoyu Wang, Cheng Chen,Xuefeng Cui,Fa Zhang

semanticscholar(2022)

引用 0|浏览14
暂无评分
摘要
Cryo-electron tomography (cryo-ET) is an imaging technique that allows three-dimensional visualization of macro-molecular assemblies under near-native conditions. Cryo-ET comes with a number of challenges, mainly low signal-to-noise and inability to obtain images from all angles. Computational methods are key to analyze cryo-electron tomograms. To promote innovation in computational methods, we generate a novel simulated dataset to benchmark different methods of localization and classification of biological macromolecules in tomograms. Our publicly available dataset contains ten tomographic reconstructions of simulated cell-like volumes. Each volume contains twelve different types of complexes, varying in size, function and structure. In this paper, we have evaluated seven different methods of finding and classifying proteins. Seven research groups present results obtained with learning-based methods and trained on the simulated dataset, as well as a baseline template matching (TM), a traditional method widely used in cryoET research. We show that learning-based approaches can achieve notably better localization and classification performance than TM. We also experimentally confirm that there is a negative relationship between particle size and performance for all methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要