Homogenization of the Observatoire de Haute Provence ECC ozonesonde data record: comparison with lidar and satellite observations

semanticscholar(2022)

Cited 0|Views13
No score
Abstract
Abstract. The Observatoire de Haute Provence (OHP) weekly Electrochemical Concentration Cell (ECC) ozonesonde data have been homogenized for the time period 1991–2020 according to the recommendations of the Ozonesonde Data Quality Assessment (O3S-DQA) panel. The assessment of the ECC homogenization benefit has been carried out using comparisons with ground based instruments also measuring ozone at the same station (lidar, surface measurements) and with collocated satellite observations of the O3 vertical profile by Microwave Limb Sounder (MLS). The major differences between uncorrected and homogenized ECC are related to a change of ozonesonde type in 1997, removal of the pressure dependency of the ECC background current and correction of internal ozonesonde temperature. The 3–4 ppbv positive bias between ECC and lidar in the troposphere is corrected with the homogenization. The ECC 30-years trends of the seasonally adjusted ozone concentrations are also significantly improved both in the troposphere and the stratosphere when the ECC concentrations are homogenized, as shown by the ECC/lidar or ECC/surface ozone trend comparisons. A −0.29 % per year negative trend of the normalization factor (NT) calculated using independent measurements of the total ozone column (TOC) at OHP disappears after homogenization of the ECC. There is however a remaining −5 % negative bias in the TOC which is likely related to an underestimate of the ECC concentrations in the stratosphere above 50 hPa as shown by direct comparison with the OHP lidar and MLS. The reason for this bias is still unclear, but a possible explanation might be related to freezing or evaporation of the sonde solution in the stratosphere. Both the comparisons with lidar and satellite observations suggest that homogenization increases the negative bias of the ECC up to 10 % above 28 km.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined