Chrome Extension
WeChat Mini Program
Use on ChatGLM

Static and dynamic diamond anvil cell (s-dDAC): A bidirectional remote controlled device for static and dynamic compression/decompression

MATTER AND RADIATION AT EXTREMES(2022)

Cited 11|Views4
No score
Abstract
A novel bidirectional remotely controlled device for static and dynamic compression/decompression using diamond anvil cells (DACs) has been developed that can control pressure in an accurate and consistent manner. Electromechanical piezoelectric actuators are applied to a conventional DAC, allowing applications under a variety of pressure conditions. Using this static and dynamic DAC (s-dDAC), it is possible to addresses the poorly studied experimental regime lying between purely static and purely dynamic studies. The s-dDAC, driven by three piezoelectric actuators, can be combined with a time-resolved spectral measurement system and high-speed imaging device to study the structural changes, chemical reactions, and properties of materials under extreme conditions. The maximum compression/decompression rate or pressure range highly depends on the culet size of the anvil, and a higher compression rate and wider pressure range can be realized in a DAC with smaller anvil culet. With our s-dDAC, we have been able to achieve the highest compression rate to date with a 300 mu m culet anvil: 48 TPa/s. An overview of a variety of experimental measurements possible with our device is presented.& nbsp;(C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
More
Translated text
Key words
dynamic diamond anvil cell,dynamic compression/decompression,s-ddac
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined